Changes in salivary proteome before and after cigarette smoking in smokers compared to sham smoking in nonsmokers: A pilot study

Indu Sinha¹, Jennifer Modesto², Nicolle M. Krebs², Anne E. Stanley³, Vonn A. Walter², John P. Richie Jr.², Joshua E. Muscat², Raghu Sinha¹

ABSTRACT

INTRODUCTION Smoking is the leading cause of preventable disease. Although smoking results in an acute effect of relaxation and positive mood through dopamine release, smoking is thought to increase stress symptoms such as heart rate and blood pressure from nicotine-induced effects on the HPA axis and increased cortisol. Despite the importance in understanding the mechanisms in smoking maintenance, little is known about the overall protein and physiological response to smoking. There may be multiple functions involved that if identified might help in improving methods for behavioral and pharmacological interventions. Therefore, our goal for this pilot study was to identify proteins in the saliva that change in response to an acute smoking event versus acute sham smoking event in smokers and non-smokers, respectively.

METHODS We employed the iTRAQ technique followed by Mass Spectrometry to identify differentially expressed proteins in saliva of smokers and non-smokers after smoking cigarettes and sham smoking, respectively. We also validated some of the salivary proteins by ELISA or western blotting. In addition, salivary cortisol and salivary amylase (sAA) activity were measured.

RESULTS In all, 484 salivary proteins were identified. Several proteins were elevated as well as decreased in smokers compared to non-smokers. Among these were proteins associated with stress response including fibrinogen alpha, cystatin A and sAA. Our investigation also highlights methodological considerations in study design, sampling and iTRAQ analysis.

CONCLUSIONS We suggest further investigation of other differentially expressed proteins in this study including ACBP, A2ML1, APOA4, BPIB1, BPIA2, CAH1, CAH6, CYTA, DSG1, EST1, GRP78, GSTO1, sAA, SAP, STAT, TCO1, and TGM3 that might assist in improving methods for behavioral and pharmacological interventions for smokers.

1 Department of Biochemistry and Molecular Biology, Bonn State Cancer Institute

AFFILIATION

Penn State Cancer Institute, Hershey, United States 2 Department of Public Health Sciences, Penn State Cancer Institute, Hershey, United States 3 Mass Spectrometry and Proteomics Core, Penn State University College of Medicine, Hershey, United States

CORRESPONDENCE TO

Raghu Sinha. Department of Biochemistry and Molecular Biology, Penn State Cancer Institute, 500 University Drive, Rm. T4415, CH76 Hershey, PA 17033, United States. E-mail: rus15@psu.edu

KEYWORDS

proteomics, saliva, salivary alpha amylase, smokers, nonsmokers

Received: 8 March 2021 Revised: 31 May 2021 Accepted: 31 May 2021

https://doi.org/10.18332/tid/138336

Tob. Induc. Dis. 2021;19(July):56

INTRODUCTION

Smoking is the leading cause of premature mortality¹. A major reason smokers have a difficult time quitting is the need to alleviate psychological stress and negative mood. Clinically, this is known as self-medication, where smoking is used to lower negative mood and stress, and increase positive mood. The

behavioral reactions are rapid, as nicotine reaches the brain in a number of seconds. A single cigarette, which typically is only puffed about 10 times, is sufficient to temporarily satisfy smoking cravings and increase positive mood. Preclinical research also shows that stress increases drug self-administration and drug seeking behaviors. Some antidepressants facilitate smoking cessation but the mechanism is not known². Little is known about the biology, psychology and the interplay between psychological and biological stress in response to smoking. There is a stress indication model of smoking, which postulates that soon after finishing a cigarette, smokers begin to experience adverse psychological symptoms such as changes in mood and stress associated with acute nicotine withdrawal³. The stress hormone cortisol is the standard biomarker of stress response, representing the activation of the hypothalamic-pituitary-adrenal (HPA) axis pathway. Both salivary amylase protein levels and sAA activity have also been used in stress research. Smoking related literature indicates impact on sAA activity as one of the stress related markers^{4,5}. Given the limited effectiveness of standard of care treatment for nicotine dependence (e.g. counseling and nicotine pharmacotherapy), a greater understanding of the role of stress could potentially lead to new and improved methods for behavioral and pharmacological interventions.

The typical pack-a-day smoker waits approximately 60 minutes or less between each cigarette throughout awake-hours. The maintenance of smoking throughout the day is thought to reflect smokers' attempts to regulate mood and feelings of relaxation.

The biological pathways in the maintenance of smoking from one cigarette to the next are not well understood. The one established mechanism is that smoking increases adrenocorticotropic hormone (ACTH), which stimulates cortisol secretion^{6,7}. This response has been attributed to the nicotine in tobacco smoke⁸. In the drug dependence field, proteomics has been proposed to identify protein patterns that underlie psychological and neurological mechanisms9. A study demonstrated rapid effects of stress-induced HPA activation in rats, following only a 15-minute physical stressor¹⁰. Hwang and Li¹¹ identified several differentially expressed proteins in various brain regions of rats administered with nicotine. Cecconi et al.¹² observed significant changes in C-reactive protein along with other serum proteins in rats at different time points during nicotine administration and nicotine extinction cycles within a 2-week period. Rat models have also been recently employed to study secondhand smoke exposure¹³.

There are mixed findings on smoking status and cortisol. The Steptoe et al.¹⁴ study found smoking

is associated with an acute increase in cortisol, and 6-week abstinence reduced cortisol. Although it has been reported for decades that smoking helps reduce negative affect, the effect is temporary whereas smoking increases the heart rate, which increases anxiety, a physiological component of the stress response¹⁵. One study showed that long-term guitters had reduced perceived stress levels compared to non-quitters¹⁶. The application of proteomics to understanding nicotine dependence is virtually unexplored. Nicotine dependence is thought to be due to the moods (e.g. relief of stress, anxiety, etc.) associated with nicotine intake6. While a number of studies have investigated the effects of nicotine on a specific gene or protein response, in either in vivo or in vitro systems⁹, systematic studies on proteomic profiles during chronic exposure to nicotine have not been conducted and few studies on nicotine consumption in free living smokers have been reported. Moreover, sAA exhibits a stable circadian pattern that mirrors that of salivary cortisol, and has the potential to be accepted as a non-invasive biomarker for the sympathetic nervous system (SNS)^{17,18}. However, there are few data on how it is influenced by smoking.

Several biological fluids have been used for measurement of proteins in smokers including plasma¹⁹, sputum^{20,21}, bronchoalveolar lavage fluid^{22,23}, and saliva^{24,25}. We have also used exhaled breath condensate (EBC) for lung proteomics²⁶ but EBC and BALF are methods suited for studying proteins in the respiratory tract. In addition, cortisol is a key marker for the purposes of this study, which can be obtained from saliva but not EBC. Saliva is also considered an easily obtainable clear fluid, which is indicative of individual's profile at the time of collection. For research subjects, the non-invasive collection techniques of saliva dramatically reduce the anxiety and discomfort and simplify procurement of repeated samples for monitoring overtime.

The goal of the current pilot study was to determine the feasibility of using proteomics in human subjects' research to identify new protein markers in response to acute smoking. There is a model for studying the acute effects of cigarette smoke on biological responses *in vitro*²⁷ and in humans²⁸. We took a similar approach for the current pilot study and analyzed saliva samples from current smokers and non-smokers before and after smoking two cigarettes/ sham smoking two cigarettes, respectively, with a gap of 60 min between smoking sessions, using isobaric tags for relative and absolute quantitation (iTRAQ) methodology to identify new proteins that might assist in understanding changes that occur in the stress response to smoking.

METHODS

Participants

Smokers included three males and two females (aged 19-55 years) that had previously participated in the Pennsylvania Adult Smoking Study²⁹. Inclusion criteria for this pilot study were: smokers, aged ≥ 18 years and smoked at least 1 cigarette (Cig) per day for the past year; non-smokers, aged ≥ 18 years and not smoked in the past 2 years. Exclusion criterion was: being pregnant. All smokers were Caucasian with less than college education and participants smoked between 15-30 cigarettes per day. Four control samples were obtained from non-smoking employees aged 19-55 years including two men and two women. All were college educated. Three were Caucasian and one was Asian. All the participants signed a consent form prior to their participation in the pilot study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Institutional Review Board (IRB# PRAMS042265EP) of Penn State University College of Medicine.

Procedures

All participants entered the study by completing a telephone interview that determined eligibility and were provided a description of the study. Participants who were eligible and interested were scheduled for one study visit at home for smokers. For nonsmoker participants the visit was hosted within the laboratory setting of Penn State College of Medicine. At the visit, participants gave written consent and completed interviewer-administered questionnaires. The smokers were asked to smoke their usual brand of cigarette and after a mouthwash they were asked to chew on flavor-free gum; 6-8 mL of saliva was collected, by spitting, into a glass Pasteur pipette in a DNAse-RNAse-free polypropylene tube containing 1 mM sodium orthovanadate and protease inhibitors (Sigma-Aldrich, St. Louis, MO) and placed on ice. The smoking session was repeated after a gap of at least 1 h and tubes from both collection times were

stored on ice for 1-2 h at which point, tubes were transported to the laboratory for further processing. Non-smokers were asked to use a sham unlit cigarette and perform the saliva collection as described above. Saliva samples were collected from 5 smokers and 4 non-smokers before and 30 minutes after each smoking session. Saliva tubes were centrifuged at 10000 rpm for 10 min at 4°C and separate aliquots of supernatants were stored frozen at -80°C until analysis. Most studies of changes in reported stress level have looked at the effects of withdrawal over a long time period. We chose to go with an acute time frame of 30 min after smoking. All studies started at about 12:00-12:30 p.m., to account for the diurnal variation in cortisol levels, which spike in the early morning hours.

Sample processing for iTRAQ analysis

For the iTRAQ analysis (Supplementary file Figure S1), 5 saliva samples were pooled from smokers separately at baseline and after smoking the first cigarette (Cig 1). Similarly, saliva samples before and after smoking the second cigarette (Cig 2) were also pooled separately. In addition, 4 saliva samples were pooled from non-smokers before and after first sham unlit cigarette smoking separately and before and after second sham cigarette separately for a total of 8-pooled samples. All the samples were processed according to the Penn State University College of Medicine (PSUCOM), Mass Spectrometry and Proteomics Core Facility protocol adapted from the manufacturer's instructions (AB SCIEX, Framingham, MA) (http:// med.psu.edu/web/core/proteinsmassspectometry/ protocols/itraq) as described earlier³⁰. Briefly, the iTRAQ methodology involved digesting equal amounts of protein from the pooled samples (100 µg) with trypsin and subsequently labeling each pooled sample with a different tag (Supplementary file Figure S1). The 8 different isobaric tags add the same mass to primary amine groups in the tryptic peptides from each pooled sample, but with each tag composed of different proportions of $12C \rightarrow 13C$ and $14N \rightarrow 15N$ substitutions in one portion of the tag, yielding quantitative fragments ranging from 113 to 121 Daltons upon MS/MS fragmentation. The amount of each of these fragments arising from fragmentation of each peptide peak shows proportionally how much of each peptide peak came from each individually

Tobacco Induced Diseases

labeled sample. The labeling with tags was performed using the iTRAQ® Reagent-8Plex Multiplex kit (AB SCIEX, Framingham, MA). These tagged samples were submitted to the Proteomic Core Facility at PSUCOM. The labeled peptides were then resolved by two-dimensional liquid chromatography prior to matrix-assisted laser desorption and ionization time-of-flight tandem mass spectrometry. The details on the separation and analysis of proteins by 2D-LC as well as the methodology involving mass spectroscopy (MALDI TOF/TOF) are described in the Supplementary file. Peptide identification, protein grouping, and subsequent protein quantitation were done using the Paragon and ProGroup Algorithms in the ProteinPilot[™] 4.5 Software package (AB SCIEX, Framingham, MA), searching the NCBI human database plus a list of 389 common contaminants (Supplementary file). The datasets presented in this software are ratios of the condition (e.g. after/before smoking a sham or real cigarette). The p-values were calculated from a standard Student's t-test value, calculated as the average of the logs of the ratios of the individual peptides belonging to each protein divided by the standard error of the average of logs of the ratios of those peptides. Because of the large number of proteins considered in this experiment, p-values from the ProteinPilot analysis were adjusted to correct for multiple testing. In brief, for each of the four comparisons - 114:113, 116:115, 118:117, 121:119 - the Benjamini-Hochberg procedure was applied to convert the p-values to false discovery rate q-values using the *p.adjust(*) function in R 3.6.3³¹.

We looked for an effect of smoking by comparing the after/before protein ratios for smokers and nonsmokers. Ratios significantly greater than 1 indicate a differential increase in a given protein after sham or cigarette smoking and ratios significantly lower than 1 indicate a differential decrease in a given protein after sham or cigarette smoking.

In addition to discovered proteins, we measured the following markers of stress.

Salivary alpha amylase (sAA) protein expression by western blot

Equal amounts of $(10 \ \mu g)$ saliva proteins were separated on 10% SDS-PAGE gels and transferred on polyvinylidene fluoride membrane. Anti-salivary alpha amylase and β -actin (Santa Cruz Biotechnology, Dallas, TX) antibodies were reacted with the blots at 1:1000 at 4°C. Following washings in TBS-Tween, horseradish peroxidase (HRP)-conjugated anti-goat secondary antibody was used at a dilution of 1:3000. Band expressions were developed using PierceTM ECL reagents (Thermo Scientific, Rockford, IL) and band densities were quantified using Image J analysis (National Institute of Health, Bethesda, MD). Fold change in band densities of sAA protein were normalized to band density of β -actin for all the samples.

Salivary cortisol levels

Salivary cortisol, yet another established stress related marker^{32,33} was measured in saliva samples by commercially available ELISA kit (Salimetrics, State College, PA).

Enzyme activity for sAA

The sAA activity was measured in duplicate in all the saliva samples from smokers and non-smokers following the instructions provided with Salimetrics Kit (Salimetrics, State College, PA).

Salivary fibrinogen alpha and cystatin A levels

Salivary fibrinogen alpha and cystatin A were measured by commercial ELISA kits manufactured by Nova Lifetech Limited (Mongkok Ki, Hong Kong) and Assaypro LLC (St Charles, MO), respectively.

Statistical analysis and power

Quantitative levels of fibrinogen alpha, cystatin A, sAA (western blot analysis) and salivary cortisol were recorded for both smokers (n=5) and nonsmokers (n=4) after both smoking sessions (cigarette smoking/sham smoking). SAS PROC MIXED (SAS 9.4, SAS Institute, Cary, NC, USA) was used to fit repeated measures linear models to compare protein levels between smokers and non-smokers. Models were fit using either smoking status alone or smoking status and one additional covariate (baseline age or weight). More complicated multivariable models were not used because of the small number of observations. Each protein difference was modeled separately, and all tests were performed at α =0.05 level. Additional analysis was performed to observe any association between the protein ratios in smokers and non-smokers after smoking (or sham smoking)

eins in smokers and after smoking/sham-

moke (S)

1.42 1.56 3.60

2.25

0.63

1.92

Smokers (S)

0.14 0.28

0.21

Non-smokers (NS)

0.42 0.98 0.57

1.29

0.25 2.00

0.92

Non-smokers (NS)

0.51 2.99

1.75

eins in smokers and after smoking/sham-

Cig 1 and Cig 2 using Spearman's correlation (r). A previous proteomic profile of smokers using 5 subjects per group found significant differential expression of proteins, and was used for the sample size determination of the current study²⁸.

RESULTS

iTRAQ analysis

A total of 484 proteins were identified in the pooled saliva samples by iTRAQ analysis (Supplementary file Table S1). The NCBI curated RefSeg protein sequence database, against which observed MS/MS spectra were searched by ProteinPilot (AB SCIEX, Framingham, MA), lists only one protein sequence per protein (to avoid duplicate entries). Thus, when a preproprotein version of secreted proteins is known, that is the single full-length sequence that is listed in the curated RefSeq protein sequence database, then many confident protein IDs are listed by name as the 'preproprotein' version of the sequence. However, manual inspection of the actual peptide sequences confidently identified shows that all of the peptides which were confidently identified and assigned to these full 'preprotein' sequences corresponded to peptides from the normally cleaved mature form of the identified proteins. With no peptides identified from the N-terminal cleaved pre-protein segments, the peptides which were identified are therefore consistent with assignment of the protein ID corresponding to the peptides identified as being the mature secreted forms of the proteins.

Characteristics of proteins identified in iTRAQ from saliva of smokers and non-smokers after smoking or sham smoking

A heat map for subset of significant proteins depicts the differential expression of salivary proteins that were altered after smoking or sham smoking Cig 1 and Cig 2 in smokers and non-smokers (Figure 1a). Out of these, 24 proteins were significantly (p < 0.05)altered in smokers and non-smokers after smoking Cig 1 and sham smoking, respectively (Table 1) and only six proteins were commonly altered among these (Figure 1b). After smoking/sham smoking Cig 2, a total of 18 and 19 proteins were significantly altered in smokers and non-smokers, respectively (Table 1) and only two proteins were common among these (Figure 1c). The 8 common proteins were changing most likely because of smoking a cigarette rather than an act of smoking a cigarette and this needs to be verified in the future (Figure 1b and 1c).

Table 1 describes the ratios of differentially expressed proteins identified in smokers and nonsmokers after smoking and sham smoking cigarettes, respectively. Several of these proteins were increased in smokers after smoking Cig 1 and Cig 2. To observe similarities in protein fold changes before and after Cig 1 and Cig 2 in smokers and non-smokers, a Spearman's correlation was also performed. Data analysis on 60 proteins from smokers showed r = 0.62369, $p(2-tailed) = 1.019 \times 10^{-7}$, and from nonsmokers showed r =0.03221, p(2-tailed)=0.80697.

Figure 1. a) Heat map for differential salivary proteomics in smokers and non-smokers following smoking/sham smoking Cig 1 and Cig 2. b) List of common proteins expressed in saliva of smokers vs non-smokers after smoking/sham smoking Cig 1. c) List of common proteins expressed in saliva of smokers vs non-smokers after smoking/sham smoking Cig 2

a.		s		NS	
UniProt ID	Cig-1	Cia-2	Cig-1	Cig-2	
A1AT HUMAN					
A2ML1 HUMAN					
ACBP_HUMAN					
ALBU HUMAN					
ALDOA HUMAN					b.
AMY1 HUMAN					ы.
APOA1 HUMAN					
APOA2_HUMAN					
APOA2_HUMAN					Common prot
B2MG HUMAN					non-smokers
BPIA2 HUMAN					smoking Cig 1
BPIB1 HUMAN					
CAH6_HUMAN CATD HUMAN					
COTL1_HUMAN					UniProt ID
CUTA_HUMAN					A2ML1 HUMAN
CYTA_HUMAN			_		AMY1 HUMAN
DAG1_HUMAN					APOA4 HUMAN
DMBT1_HUMAN					B2MG HUMAN
DSG1_HUMAN					EST1_HUMAN
EST1_HUMAN					VAT1 HUMAN
EZRI_HUMAN			_		-
FABP5_HUMAN					Mean iTRAQ
FCGBP_HUMAN					ratio
FIBA_HUMAN					
GRP78_HUMAN					•
GSTO1_HUMAN					С.
HBA_HUMAN					
IL36G_HUMAN					Common prot
K1C13_HUMAN					Common prot
K1C14_HUMAN					non-smokers
K1C16_HUMAN					smoking Cig 2
K22O_HUMAN					
KPYM_HUMAN					
MUC5B_HUMAN					
NGAL_HUMAN					
NQO1_HUMAN					United to
PRDX4_HUMAN					UniProt ID
PRTN3_HUMAN					ALBU_HUMAN
PTGR1_HUMAN					TPM3_HUMAN
QSOX1_HUMAN					Marris ITDAO
S10A7_HUMAN					Mean iTRAQ
SAP_HUMAN					ratio
SPB3_HUMAN					
STAT_HUMAN					
TCO1_HUMAN					
TGM3_HUMAN					
TPM3_HUMAN					
TRFE_HUMAN					
TRFL_HUMAN					
VAT1_HUMAN					
		0.01	16.4		

Research Paper

Table 1. List of proteins significantly altered in saliva of smokers or non-smokers after smoking and sham smoking, respectively, following iTRAQ analysis. The ratios of after/before in smokers and non-smokers are depicted along with the p-values and number of peptides for Cig 1 and Cig 2. P-Values were also significant based on q values (+ q < 0.05; + + q < 0.001). Proteins highlighted in grey are higher in smokers after smoking Cig 1 and Cig 2 compared to that in non-smokers after sham smoking Cig 1 and Cig 2

A2ML1 Alpha-2-macroglobulin-like protein 1 precursor 61 1.42 0.041 2.65 0.016 0.42 0.021 0.49 0.077 No ACBP Acyl-CoA-binding protein isoform 5 9 0.25 0.002 0.14 0.001 0.46 0.004 0.51 0.011 Yes 2 ALBU Serum albumin preproprotein 228 0.50 0.032 0.14 0.001 0.46 0.004 0.51 0.017 No ALDOA Fructose-bisphosphate aldolase A isoform 1 13 1.12 0.404 1.91 0.421 0.56 0.183 1.66 0.037 No ANXA6 Annexin A6 isoform 1 3 0.49 0.333 3.80 0.204 24.43 0.033 0.47 0.322 No APOA1 Apolipoprotein A-I preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.752 0.52 0.244 Yes 2 APOA4 Apolipoprotein A-I/Precursor 5 2.25	UniProt ID (HUMAN)	Name of protein	Peptides	ACig1/ BCig1	Cig 1 S p	ACig2/ BCig2	Cig 2 S	AShCig1/ BShCig1	Cig 1 NS	AShCig2/ BShCig2	Cig 2 NS	Reported in smokers	References
precursor precursor ACBP Acyl-CoA-binding protein isoform 5 9 0.25 0.004 0.21 0.005 0.13 0.194 1.66 0.795 No ALBU Serum albumin proportotin 228 0.002 0.14 0.001* 0.46 0.004 0.51 0.011 Yes 2 ALDOA Fructose-bisphosphate aldolase A isoform 1 13 1.12 0.404 1.91 0.421 0.656 0.183 1.66 0.037 No ANYA Alpha-amylase 1 precursor 174 1.55 0.003 3.80 0.204 24.43 0.033 0.47 0.322 No ANXA6 Annexin A6 isoform 1 2 1.45 0.047 1.22 0.053 1.02 0.52 0.22 No 2 As APOA2 Apolipoprotein A-I preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.52 0.25 0.263 0.219 0.040 1.58 0.277 Yes 2	A1AT	Alpha-1-antitrypsin precursor	12	0.86	0.790	0.31	0.084	0.33	0.045	0.52	0.080	Yes	24
ALBU Serum albumin preproprotein 228 0.50 0.092 0.14 0.001' 0.46 0.04 0.51 0.011 Yes 2 ALDOA Fructose-bisphosphate aldolase A isoform 1 13 1.12 0.404 1.91 0.421 0.56 0.183 1.66 0.037 No AMY1 Alpha-amylase 1 precursor 1724 1.55 0.003 1.38 0.002 0.98 0.005 1.00 0.840 Yes 2 ANXA6 Annexin A6 isoform 1 3 0.49 0.393 3.80 0.24 24.43 0.033 0.47 0.322 No APOA1 Apolipoprotein A-II preproprotein 13 2.88 0.817 2.75 0.875 0.57 0.008 0.65 0.008 Yes 2 APOA4 Apolipoprotein A-II preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.752 0.52 0.224 Yes 2 BPIA2 BPI fold-containing family A member 2 88 3.66 0.017 1.85 0.389 0.62 0.995 0.94	A2ML1		61	1.42	0.041	2.65	0.016	0.42	0.021	0.49	0.077	No	
ALDOA Fructose-bisphosphate aldolase A isoform 1 13 1.12 0.404 1.91 0.421 0.56 0.183 1.66 0.037 No AMY1 Alpha-amylase 1 precursor 1724 1.55 0.003 1.38 0.002 0.98 0.005 1.00 0.840 Yes 2 ANXA6 Annexin A6 isoform 1 3 0.49 0.393 3.80 0.204 24.43 0.033 0.47 0.322 No APOA1 Apolipoprotein A-I preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.752 0.52 0.244 Yes 2 APOA4 Apolipoprotein A-IV precursor 4 3.60 0.007 1.22 0.053 1.02 0.752 0.52 0.244 Yes 2 APOA4 Apolipoprotein A-IV precursor 4 3.60 0.017 1.29 0.006 1.58 0.277 Yes 2 B2M6 Beta-2-microglobulin precursor 5 2.25 0.003 0.79 0.129 1.29 0.004 0.377 0.33 Yes 2	ACBP	Acyl-CoA-binding protein isoform 5	9	0.25	0.004	0.21	0.005	0.13	0.194	1.66	0.795	No	
AMY1 Alpha-amylase 1 precursor 1724 1.55 0.003 1.38 0.002 0.98 0.005 1.00 0.840 Yes 2 ANXA6 Annexin A6 isoform 1 3 0.49 0.393 3.80 0.204 24.43 0.033 0.47 0.322 No APOA1 Apolipoprotein A-I preproprotein 13 2.88 0.817 2.75 0.875 0.57 0.008 0.65 0.008 Yes 2 APOA2 Apolipoprotein A-II preproprotein 2 1.45 0.007 1.22 0.053 1.02 0.752 0.52 0.244 Yes 2 APOA4 Apolipoprotein A-IV precursor 4 3.60 0.006 1.05 0.011 2.51 0.005 1.58 0.277 Yes 2 BPMA Beta-2-microglobulin precursor 5 2.25 0.003 0.79 0.129 1.29 0.004 0.69 0.107 Yes 2 BPIA2 BPI fold-containing family A member 2 88 3.66 0.017 1.85 0.347 1.64 0.575 0.47 <td>ALBU</td> <td>Serum albumin preproprotein</td> <td>228</td> <td>0.50</td> <td>0.092</td> <td>0.14</td> <td>0.001+</td> <td>0.46</td> <td>0.004</td> <td>0.51</td> <td>0.011</td> <td>Yes</td> <td>24</td>	ALBU	Serum albumin preproprotein	228	0.50	0.092	0.14	0.001+	0.46	0.004	0.51	0.011	Yes	24
ANXA6 Annexin A6 isoform 1 3 0.49 0.393 3.80 0.204 24.43 0.033 0.47 0.322 No APOA1 Apolipoprotein A-I preproprotein 13 2.88 0.817 2.75 0.875 0.57 0.008 0.65 0.008 Yes 3 APOA2 Apolipoprotein A-II preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.752 0.52 0.244 Yes 3 APOA4 Apolipoprotein A-IV precursor 4 3.60 0.006 1.05 0.011 2.51 0.006 1.58 0.277 Yes 3 BPIA Beta-2-microglobulin precursor 5 2.25 0.003 0.79 0.129 1.29 0.004 0.69 0.107 Yes 3 BPIA BPI fold-containing family A member 2 precursor 88 3.66 0.017 1.85 0.389 0.62 0.995 0.47 0.322 Yes 3 CAH1 Carbonic anhydrase 1 3 2.032 0.033 1.37 0.823 0.07 0.914 0.77 </td <td>ALDOA</td> <td>Fructose-bisphosphate aldolase A isoform 1</td> <td>13</td> <td>1.12</td> <td>0.404</td> <td>1.91</td> <td>0.421</td> <td>0.56</td> <td>0.183</td> <td>1.66</td> <td>0.037</td> <td>No</td> <td></td>	ALDOA	Fructose-bisphosphate aldolase A isoform 1	13	1.12	0.404	1.91	0.421	0.56	0.183	1.66	0.037	No	
APOA1 Apolipoprotein A-I preproprotein 13 2.88 0.817 2.75 0.875 0.057 0.008 0.65 0.008 Yes 2 APOA2 Apolipoprotein A-II preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.752 0.52 0.244 Yes 2 APOA4 Apolipoprotein A-IV precursor 4 3.60 0.006 1.05 0.011 2.51 0.006 1.58 0.277 Yes 2 B2MG Beta-2-microglobulin precursor 5 2.25 0.003 0.79 0.129 1.29 0.004 0.69 0.107 Yes 2 BPIA2 BPI fold-containing family A member 2 precursor 88 3.66 0.017 1.85 0.389 0.62 0.995 0.94 0.320 Yes 2 CAH1 Carbonic anhydrase 1 19 9.55 0.026 3.25 0.347 1.64 0.575 0.47 0.333 Yes 2 CAH1 Carbonic anhydrase 6 isoform 1 precursor 117 5.30 0.14 1.53 0.182 0.77	AMY1	Alpha-amylase 1 precursor	1724	1.55	0.003	1.38	0.002	0.98	0.005	1.00	0.840	Yes	24
APOA2 Apolipoprotein A-II preproprotein 2 1.45 0.047 1.22 0.053 1.02 0.752 0.52 0.244 Yes 32 APOA4 Apolipoprotein A-IV precursor 4 3.60 0.006 1.05 0.011 2.51 0.006 1.58 0.277 Yes 32 B2MG Beta-2-microglobulin precursor 5 2.25 0.003 0.79 0.129 1.29 0.004 0.69 0.107 Yes 32 BPIA2 BPI fold-containing family A member 2 precursor 88 3.66 0.017 1.85 0.389 0.62 0.995 0.94 0.320 Yes 32 CAH1 Carbonic anhydrase 1 3 20.32 0.033 1.37 0.823 0.07 0.094 0.77 0.497 Yes 32 <	ANXA6	Annexin A6 isoform 1	3	0.49	0.393	3.80	0.204	24.43	0.033	0.47	0.322	No	
APOA4 Apolipoprotein A-IV precursor 4 3.60 0.006 1.05 0.011 2.51 0.006 1.58 0.277 Yes Y	APOA1	Apolipoprotein A-I preproprotein	13	2.88	0.817	2.75	0.875	0.57	0.008	0.65	0.008	Yes	34
B2MG Beta-2-microglobulin precursor 5 2.25 0.003 0.79 0.129 1.29 0.004 0.69 0.107 Yes 3 BPIA2 BPI fold-containing family A member 2 precursor 88 3.66 0.017 1.85 0.389 0.62 0.995 0.94 0.320 Yes 2 BPIB1 BPI fold-containing family B member 1 precursor 19 9.55 0.026 3.25 0.347 1.64 0.575 0.47 0.333 Yes 2 CAH1 Carbonic anhydrase 1 3 20.32 0.033 1.37 0.823 0.07 0.994 0.77 0.497 Yes 2 CAH6 Carbonic anhydrase 6 isoform 1 precursor 117 5.30 0.014 1.53 0.182 0.77 0.912 0.47 0.020 Yes 2 CATD Cathepsin D preproprotein 12 0.76 0.865 0.28 0.003 0.92 0.915 0.74 0.631 Yes 2 CATD Cathepsin F precursor 1 1.82 0.366 1.38 0.552 1.19	APOA2	Apolipoprotein A-II preproprotein	2	1.45	0.047	1.22	0.053	1.02	0.752	0.52	0.244	Yes	35
BPIA2 BPI fold-containing family A member 2 precursor 88 3.66 0.017 1.85 0.389 0.62 0.995 0.94 0.320 Yes 2 BPIB1 BPI fold-containing family B member 1 precursor 19 9.55 0.026 3.25 0.347 1.64 0.575 0.47 0.333 Yes 2 CAH1 Carbonic anhydrase 1 3 20.32 0.033 1.37 0.823 0.07 0.094 0.77 0.497 Yes 2 CAH6 Carbonic anhydrase 1 3 20.32 0.033 1.37 0.823 0.07 0.094 0.77 0.497 Yes 2 CAH6 Carbonic anhydrase 6 isoform 1 precursor 117 5.30 0.014 1.53 0.182 0.77 0.912 0.47 0.020 Yes 2 CATD Cathepsin D preproprotein 12 0.76 0.865 0.28 0.003 0.92 0.915 0.74 0.631 Yes 2 CATF Cathe	APOA4	Apolipoprotein A-IV precursor	4	3.60	0.006	1.05	0.011	2.51	0.006	1.58	0.277	Yes	19
precursor BPIB1 BPI fold-containing family B member 1 precursor 19 9.55 0.026 3.25 0.347 1.64 0.575 0.47 0.333 Yes 2 CAH1 Carbonic anhydrase 1 3 20.32 0.033 1.37 0.823 0.07 0.094 0.77 0.497 Yes 2 CAH6 Carbonic anhydrase 6 isoform 1 precursor 117 5.30 0.014 1.53 0.182 0.77 0.912 0.47 0.020 Yes 2 CAH6 Carbonic anhydrase 6 isoform 1 precursor 117 5.30 0.014 1.53 0.182 0.77 0.912 0.47 0.020 Yes 2 CATD Cathepsin D preproprotein 12 0.76 0.865 0.28 0.003 0.92 0.915 0.74 0.631 Yes 2 CATF Cathepsin F precursor 1 1.82 0.366 1.38 0.552 1.19 0.722 87.90 0.017 No COTL1 </td <td>B2MG</td> <td>Beta-2-microglobulin precursor</td> <td>5</td> <td>2.25</td> <td>0.003</td> <td>0.79</td> <td>0.129</td> <td>1.29</td> <td>0.004</td> <td>0.69</td> <td>0.107</td> <td>Yes</td> <td>36</td>	B2MG	Beta-2-microglobulin precursor	5	2.25	0.003	0.79	0.129	1.29	0.004	0.69	0.107	Yes	36
precursor CAH1 Carbonic anhydrase 1 3 20.32 0.033 1.37 0.823 0.07 0.094 0.77 0.497 Yes 2 CAH6 Carbonic anhydrase 6 isoform 1 precursor 117 5.30 0.014 1.53 0.182 0.77 0.912 0.47 0.020 Yes 2 CATD Cathepsin D preproprotein 12 0.76 0.865 0.28 0.003 0.92 0.915 0.74 0.631 Yes 2 CATF Cathepsin F precursor 1 1.82 0.366 1.38 0.552 1.19 0.722 87.90 0.019 No COPG2 Coatomer subunit gamma-2 1 0.48 0.314 0.27 0.184 0.01 0.063 87.90 0.017 No COTL1 Coactosin-like protein 3 0.77 0.338 0.92 0.006 1.25 0.272 1.24 0.314 Yes 23 CRYAA Alpha-crystallin A chain 3 69.	BPIA2		88	3.66	0.017	1.85	0.389	0.62	0.995	0.94	0.320	Yes	24
CAH6Carbonic anhydrase 6 isoform 1 precursor1175.300.0141.530.1820.770.9120.470.020Yes2CATDCathepsin D preproprotein120.760.8650.280.0030.920.9150.740.631Yes3CATFCathepsin F precursor11.820.3661.380.5521.190.72287.900.019NoCOPG2Coatomer subunit gamma-210.480.3140.270.1840.010.06387.900.017NoCOTL1Coactosin-like protein30.770.3380.920.0061.250.2721.240.314Yes2.4CRYAAAlpha-crystallin A chain369.180.0193.530.1900.190.1472.880.027Yes3.4CUTAProtein CutA isoform 139.200.2131.820.4212.130.4131.920.045No	BPIB1	U ,	19	9.55	0.026	3.25	0.347	1.64	0.575	0.47	0.333	Yes	24
CATDCathepsin D preproprotein120.760.8650.280.0030.920.9150.740.631Yes2CATFCathepsin F precursor11.820.3661.380.5521.190.72287.900.019NoCOPG2Coatomer subunit gamma-210.480.3140.270.1840.010.06387.900.017NoCOTL1Coactosin-like protein30.770.3380.920.0061.250.2721.240.314Yes2CRYAAAlpha-crystallin A chain369.180.0193.530.1900.190.1472.880.027Yes3CUTAProtein CutA isoform 139.200.2131.820.4212.130.4131.920.045No	CAH1	Carbonic anhydrase 1	3	20.32	0.033	1.37	0.823	0.07	0.094	0.77	0.497	Yes	37
CATFCathepsin F precursor11.820.3661.380.5521.190.72287.900.019NoCOPG2Coatomer subunit gamma-210.480.3140.270.1840.010.06387.900.017NoCOTL1Coactosin-like protein30.770.3380.920.0061.250.2721.240.314Yes2CRYAAAlpha-crystallin A chain369.180.0193.530.1900.190.1472.880.027Yes3CUTAProtein CutA isoform 139.200.2131.820.4212.130.4131.920.045No	CAH6	Carbonic anhydrase 6 isoform 1 precursor	117	5.30	0.014	1.53	0.182	0.77	0.912	0.47	0.020	Yes	24
COPG2 Coatomer subunit gamma-2 1 0.48 0.314 0.27 0.184 0.01 0.063 87.90 0.017 No COTL1 Coactosin-like protein 3 0.77 0.338 0.92 0.006 1.25 0.272 1.24 0.314 Yes 2 CRYAA Alpha-crystallin A chain 3 69.18 0.019 3.53 0.190 0.19 0.147 2.88 0.027 Yes 3 CUTA Protein CutA isoform 1 3 9.20 0.213 1.82 0.421 2.13 0.413 1.92 0.045 No	CATD	Cathepsin D preproprotein	12	0.76	0.865	0.28	0.003	0.92	0.915	0.74	0.631	Yes	38
COTL1 Coactosin-like protein 3 0.77 0.338 0.92 0.006 1.25 0.272 1.24 0.314 Yes 2 CRYAA Alpha-crystallin A chain 3 69.18 0.019 3.53 0.190 0.19 0.147 2.88 0.027 Yes 3 CUTA Protein CutA isoform 1 3 9.20 0.213 1.82 0.421 2.13 0.413 1.92 0.045 No	CATF	Cathepsin F precursor	1	1.82	0.366	1.38	0.552	1.19	0.722	87.90	0.019	No	
CRYAA Alpha-crystallin A chain 3 69.18 0.019 3.53 0.190 0.197 2.88 0.027 Yes 3 CUTA Protein CutA isoform 1 3 9.20 0.213 1.82 0.421 2.13 0.413 1.92 0.045 No	COPG2	Coatomer subunit gamma-2	1	0.48	0.314	0.27	0.184	0.01	0.063	87.90	0.017	No	
CUTA Protein CutA isoform 1 3 9.20 0.213 1.82 0.421 2.13 0.413 1.92 0.045 No	COTL1	Coactosin-like protein	3	0.77	0.338	0.92	0.006	1.25	0.272	1.24	0.314	Yes	24
	CRYAA	Alpha-crystallin A chain	3	69.18	0.019	3.53	0.190	0.19	0.147	2.88	0.027	Yes	39
CYTA Cystatin-A 13 8.63 0.004 13.93 0.002 1.57 0.066 1.51 0.912 Yes 2	CUTA	Protein CutA isoform 1	3	9.20	0.213	1.82	0.421	2.13	0.413	1.92	0.045	No	
	CYTA	Cystatin-A	13	8.63	0.004	13.93	0.002	1.57	0.066	1.51	0.912	Yes	24

Continued

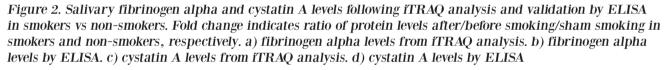
Table 1. Continued

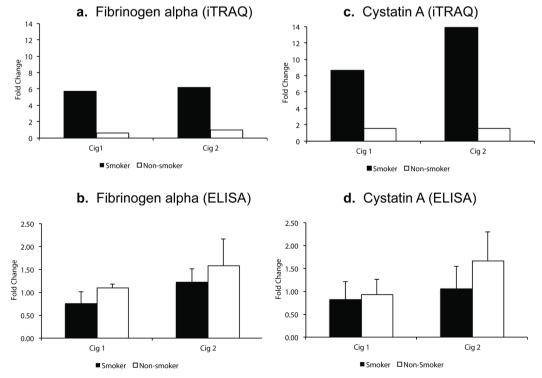
UniProt ID (HUMAN)	Name of protein	Peptides	ACig1/ BCig1	Cig 1 S	ACig2/ BCig2	Cig 2 S	AShCig1/ BShCig1	Cig 1 NS	AShCig2/ BShCig2	Cig 2 NS	Reported in smokers	References
DAG1	Dystroglycan preproprotein	5	0.86	0.836	0.34	0.031	0.67	0.669	0.70	0.411	No	
DMBT1	Deleted in malignant brain tumors 1 protein isoform c precursor	135	1.91	0.023	0.97	0.858	2.01	0.051	1.13	0.737	Yes	20
DSG1	Desmoglein-1 preproprotein	14	0.51	0.004	0.70	0.201	0.94	0.740	1.38	0.468	No	
EST1	Liver carboxylesterase 1 isoform a precursor	9	0.63	0.035	0.91	0.106	0.25	0.014	0.91	0.739	No	
EZRI	Ezrin	12	2.15	0.835	1.94	0.449	0.53	0.032	1.18	0.450	Yes	40
FABP5	Fatty acid-binding protein, epidermal	21	0.38	0.179	0.38	0.042	0.11	0.020	0.93	0.679	Yes	41
FCGBP	IgGFc-binding protein precursor	45	1.43	0.149	1.42	0.672	1.01	0.334	0.86	0.016	Yes	24
FIBA	Fibrinogen alpha chain isoform alpha preproprotein	2	5.75	0.029	6.19	0.014	0.60	0.478	1.01	0.960	Yes	34
GRP78	78 kDa glucose-regulated protein precursor	19	0.52	0.018	0.47	0.017	0.82	0.591	0.65	0.558	Yes	22
GST01	Glutathione S-transferase omega-1 isoform 1	2	1.77	0.420	8.55	0.033	0.75	0.732	0.89	0.692	Yes	42
HBA	Hemoglobin subunit alpha	8	1.53	0.503	0.18	0.397	0.02	0.014	0.79	0.376	Yes	43
IL36G	Interleukin-36 gamma	1	0.20	0.292	0.27	0.234	0.14	0.193	2.05	0.048	No	
K1C13	Keratin, type I cytoskeletal 13 isoform a	15	1.67	0.431	0.72	0.666	3.53	0.037	2.78	0.802	No	
K1C14	Keratin, type I cytoskeletal 14	16	1.04	0.153	0.25	0.184	0.41	0.011	1.47	0.447	No	
K1C16	Keratin, type I cytoskeletal 16	14	2.17	0.181	0.92	0.260	0.16	0.135	0.86	0.038	Yes	44
K220	Keratin, type II cytoskeletal 2 oral	10	1.08	0.863	0.40	0.112	5.35	0.034	0.75	0.497	No	
KPYM	Pyruvate kinase isozymes M1/M2 isoform a	15	0.45	0.056	1.94	0.351	0.82	0.177	1.36	0.001	Yes	45
MUC5B	Mucin-5B precursor	309	1.01	0.145	1.00	0.166	1.02	0.045	0.91	0.005	Yes	25
NGAL	Neutrophil gelatinase-associated lipocalin precursor	15	1.94	0.021	1.60	0.599	1.58	0.136	0.85	0.889	Yes	46
NQ01	NAD(P)H dehydrogenase [quinone] 1 isoform b	1	0.76	0.621	0.52	0.344	0.01	0.046	0.97	0.965	Yes	47
OLFM4	Olfactomedin-4 precursor	4	0.64	0.490	99.08	0.017	0.33	0.229	0.60	0.433	No	
PRDX4	Peroxiredoxin-4 precursor	6	0.82	0.064	1.12	0.125	1.31	0.004	1.07	0.235	No	
PRTN3	Myeloblastin precursor	13	6.37	0.028	6.03	0.028	1.57	0.194	0.90	0.609	No	
PTGR1	Prostaglandin reductase 1 isoform 1	8	0.82	0.890	0.87	0.637	0.86	0.869	0.09	0.020	Yes	48

Continued

Table 1. Continued

UniProt ID (HUMAN)	Name of protein	Peptides	ACig1/ BCig1	Cig 1 S p	ACig2/ BCig2	Cig 2 S	AShCig1/ BShCig1	Cig 1 NS p	AShCig2/ BShCig2	Cig 2 NS	Reported in smokers	References
QSOX1	Sulfhydryl oxidase 1 isoform a precursor	4	2.09	0.724	0.89	0.236	1.80	0.094	3.77	0.028	No	
RAB5C	RAS-related protein Rab-5C isoform b	1	1.06	0.891	0.65	0.482	2.31	0.276	80.91	0.020	No	
S10A7	Protein S100-A7	22	0.94	0.099	0.96	0.361	0.49	0.026	0.18	0.003	No	
SAP	Prosaposin isoform a preproprotein	10	11.38	0.022	3.70	0.179	0.66	0.758	1.13	0.812	No	
SODE	Extracellular superoxide dismutase [Cu-Zn] precursor	1	2.11	0.306	3.34	0.198	0.36	0.232	46.13	0.020	Yes	21
SPB3	Serpin B3	29	0.56	0.633	1.05	0.096	0.22	0.004	0.50	0.064	Yes	23
STAT	Statherin isoform a precursor	133	16.44	0.002	1.51	0.409	3.94	0.084	1.17	0.442	No	
TCO1	Transcobalamin-1 precursor	20	6.61	0.029	2.17	0.135	1.05	0.845	1.22	0.219	Yes	49
TGM3	Protein-glutamine gamma- glutamyltransferase E	19	1.98	0.007	1.53	0.825	1.16	0.481	1.07	0.531	No	
TPM3	Tropomyosin alpha-3 chain isoform 2	5	0.22	0.065	0.28	0.021	0.47	0.047	2.99	0.026	No	
TRFE	Serotransferrin precursor	61	0.35	0.088	0.13	0.001++	0.56	0.596	0.93	0.488	Yes	24
TRFL	Lactotransferrin isoform 1 preprotein	115	1.33	0.254	1.63	0.240	3.40	0.024	0.52	0.650	SHS	50
VAT1	Synaptic vesicle membrane protein VAT-1 homolog	5	2.03	0.003	1.96	0.003	2.00	0.003	0.94	0.731	Yes	24
ZG16B	Zymogen granule protein 16 homolog B precursor	63	19.95	0.081	23.12	0.107	2.00	0.011	0.81	0.072	Yes	51


Cig: cigarette. ACig: after smoking Cig. BCig: before smoking Cig. AShCig: after sham smoking Cig. BShCig: before sham smoking Cig. Cig 1: Cigarette-1. Cig 2: Cigarette-2. S: smokers. NS: non-smokers. SHS: secondhand smoke.

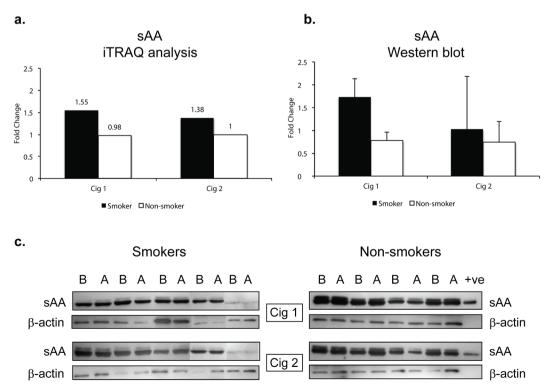

Validating iTRAQ data

For validating iTRAQ data, initially, from the list of proteins that showed a high fold-change, were found to be significant (ProteinPilot p-value) in both smoking sessions for smokers (Table 1). Next, we selected proteins fibrinogen alpha and cystatin A for which ELISA kits were available and also included a protein (sAA) that was in fact a priori hypothesized protein associated with stress response based on a review of the literature as well as it had the maximum peptide hits for protein identification. In iTRAQ analysis, fibrinogen alpha was significantly elevated 5.8-fold and 6.2-fold (p<0.05, q>0.05) in smokers after smoking Cig 1 and Cig 2, respectively. In non-smokers, however, it was reduced 0.6-fold and unchanged (p>0.05, q>0.05) after sham smoking Cig 1 and Cig 2, respectively (Figure 2a). Levels of fibrinogen alpha measured in individual saliva samples by Commercial ELISA revealed a 0.8-fold reduction and 1.2-fold increase (p>0.05) in fibrinogen levels in smokers after smoking Cig 1 and Cig 2, respectively. While in non-smokers fibrinogen levels were nonsignificantly elevated 1.1-fold and 1.58-fold after

sham smoking Cig 1 and Cig 2, respectively (Figure 2b). Interestingly, when smoking status and weight of participants were considered in a statistical model, the fibrinogen alpha levels measured by ELISA were significantly different (p<0.05) among smokers and non-smokers after both smoking sessions (Supplementary file Table S2).

In iTRAQ analysis of pooled samples, cystatin A level was significantly increased 8.6-fold and 13.9fold (p<0.005, q>0.05) in smokers after smoking Cig 1 and Cig 2, respectively, and in non-smokers it was elevated 1.5-fold (p>0.05, q>0.05) after sham smoking Cig 1 and Cig 2 (Figure 2c). Upon analyzing the individual smoker and non-smoker saliva samples by Commercial ELISA kit, cystatin A levels were increased 1.65-fold (p>0.05) in non-smokers after sham smoking Cig 2, while in smokers no significant changes were observed (Figure 2d). The fold changes in iTRAQ analysis could not be validated in ELISA and one of the reasons for this difference may be pooling the samples for the former method. Additionally, when smoking status and age or weight of participants were considered in a statistical model, the cystatin A levels

measured by ELISA were not statistically different (p>0.05) among smokers and non-smokers after both smoking sessions (Supplementary file Table S2).


sAA was significantly elevated after smoking Cig 1 and Cig 2 in smokers by 1.6-fold and 1.4-fold (p<0.005, q>0.05), respectively, as determined by iTRAQ data analysis (Figure 3a, Table 1). However, in non-smokers, sAA did not change after sham smoking Cig 1 and Cig 2.

Since sAA has been reported to be a marker for stress we wanted to examine if there were any modifications in sAA in the saliva. The iTRAQ analysis was based on pooled samples so we additionally examined individual saliva specimens by western blotting. Figure 3b depicts the quantitative data as a ratio of 'after/before' smoking Cig 1 and Cig 2 in smokers as well as 'after/before' sham smoking Cig 1 and Cig 2 in non-smokers. β -actin was used to normalize the data presented in fold change of sAA in smokers versus non-smokers. Figure 3c shows the sAA bands reacting with anti-sAA antibody in western blot analysis. Overall, baseline sAA protein bands showed higher intensity in non-smokers compared to smokers but the fold change after smoking was greater in smokers than non-smokers, yet not significant. An additional band running just above sAA likely being the glycosylated form of sAA was also expressed at higher intensity in non-smokers compared to smokers. When smoking status and age or weight of participants were considered in a statistical model, sAA levels measured by western blot showed a trend but were not statistically different (p=0.085) among smokers and non-smokers after both the smoking sessions (Supplementary file Table S2).

Impact of smoking/sham-smoking on salivary cortisol

The salivary cortisol levels were increased after smoking as well as sham smoking Cig 2 in smokers and non-smokers, respectively; however, there was a decrease in cortisol after Cig 1 in smokers as well as in non-smokers (Table 2). When smoking status and age or weight of participants were considered in a statistical model, the salivary cortisol levels were

Figure 3. Salivary alpha amylase (sAA) relative levels in smokers and non-smokers. a) sAA levels following iTRAQ analysis. b) sAA levels measured by western blot analysis. The sAA bands were normalized with corresponding β -actin levels for each sample. c) western blots for sAA in smokers and non-smokers. Fold changes in a) and b) indicate ratios of sAA levels after/before smoking/sham smoking in smokers and non-smokers, respectively. B before and A after smoking (or sham smoking in non-smokers). N=5 (smokers), N=4 (non-smokers).

Enzyme activity	Before Cig 1 Mean ± SE	After Cig 1 Mean ± SE	Before Cig 2 Mean ± SE	After Cig 2 Mean ± SE
Smokers sAA enzyme activity (U/mL)	35.75 ± 11.83	33.59 ±11.26	32.14 ± 10.95	33.85 ± 10.42
Non-smokers sAA enzyme activity (U/mL)	59.45 ± 15.20	62.73 ± 18.52	61.91 ± 14.33	71.50 ± 22.0
Smokers Cortisol (µg/dL)	0.13 ± 0.03	0.10 ± 0.03	0.08 ± 0.03	0.10 ± 0.03
Non-smokers Cortisol (µg/dL)	0.20 ± 0.02	0.17 ± 0.01	0.14 ± 0.01	0.15 ± 0.02

Table 2. Comparative sAA enzyme activity and cortisol levels in saliva of smokers and non-smokers before and after smoking/sham smoking Cig 1 and Cig 2

not statistically different (p>0.05) among smokers and non-smokers after both smoking sessions (Supplementary file Table S2).

DISCUSSION

This study sought to determine the feasibility of using proteomics in human subjects' research to identify new protein markers in the saliva that change in response to an acute smoking event versus acute sham smoking event in smokers and non-smokers, respectively. Utilizing iTRAQ methodology we were able to identify proteins that might assist in understanding changes that occur in the stress response to smoking. This new information might assist in improving methods for behavioral and pharmacological interventions for smokers. A total of 484 salivary proteins were identified by iTRAQ method in our pilot study as being affected by cigarette smoking. Some of these proteins were reported for the first time in saliva of smokers.

Some of the proteins identified in the saliva of smokers after smoking a cigarette in our study have previously been reported in biomarker studies of smokers^{19-25,33-51} and several new proteins were reported for the first time in saliva of smokers in our analysis.

Furthermore, protein profiling revealed that the common proteins amongst smokers increased about 2-fold on average (Figure 1b), while these were unchanged in non-smokers, indicating that after Cig 1 these protein changes were indeed impacted by smoking. Based on the proteins identified in our pilot study, we can begin to categorize proteins that change as a result of smoking and that have a role in nicotine dependence in smokers: AMY1, CAH1, CAH6, BPIA2, BPIB1, TCO1, NGAL, GSTO1 A2ML1, TGM3, and SAP are potential candidate proteins that are recommended to validate in a larger smoker study.

Several studies have shown that psychosocial and physical stressors can rapidly increase the sAA activity. Our study showed changes in sAA within 30 min of smoking a cigarette. In fact, sAA has been proposed as a potential non-invasive biomarker for SNS⁵². Salivary amylase along with glutathione S-transferase, and prolactin-induced protein have been shown to correlate with psychosocial stress⁴. In another study, acute stress increased salivary amylase and cystatins in medical students exposed to clinical simulations⁵. Genetically, sAA is coded by AMY1 gene and its copy number is positively correlated with sAA protein expression in humans, and that sAA amount is also positively correlated with its activity^{53,54}. About 40–50% of saliva is composed of sAA^{52} and the latter is a mixture of two isoenzymes as glycosylated and non-glycosylated that differ by just 4 kDa. However, it is still not clear if these two isoenzymes differ in their clinical roles. In our western blot analysis, we noted both glycosylated and non-glycosylated forms of sAA in saliva of non-smokers as well as smokers (Figure 3c). In a future study we will investigate the role of glycosylated sAA in behavior of smokers.

sAA activity is conventionally measured in saliva samples for studies analyzing psychosocial stress but, examining sAA activity in smokers may pose a potential technical problem. The aldehydes in smoke diminish the sAA activity in saliva⁵⁵, therefore it may be underestimating the sAA activity in saliva samples from smokers.

Among other proteins that exhibited a smokingresponse, GSTO1, GRP78, and APOA4 have been reported to be involved in psychological stress⁴, mood disorders⁵⁶, and depression⁵⁷, respectively.

Our study employed a novel arm of sham smoking in non-smokers. Interestingly, we found protein changes in this group. It may be the act of smoking rather than nicotine exposure is associated with an acute response to changes in stress. Future studies may need to consider control conditions such as these to further understand whether the proteomic response to smoking is due to smoking behaviors or to nicotine exposure.

Strengths and limitations

The iTRAQ analysis of smokers (n=5) and nonsmokers (n=4) in our pilot study identified numerous proteins in saliva for the first time. There were consistent changes in proteins in repeating the smoking as well as sham-smoking sessions in smokers and non-smokers, respectively. Evidently, there were important lessons learned while analyzing these samples. For an initial approach using iTRAQ, pooling of samples was opted to obtain changes in global proteomic profile but, when we investigated these changes in individual samples by ELISA, the overall fold-change for selected proteins was not similar as noted for cystatin A and was true for fibrinogen. In western blot analysis for sAA, however, the trend was similar as observed in iTRAQ for smokers after smoking Cig 1. It will be critical to label individual saliva samples with a unique tag in order to measure an appropriate quantitative change rather than pooling the samples from each group. By pooling the samples, the assessment of potential group differences was potentially weakened. In addition, it is imperative to validate the results of iTRAQ by one or more methods specifically, if samples have been pooled initially. Findings are not entirely in the direction we expected. For example, cortisol levels were higher in non-smokers compared to smokers in this study although the literature also is inconsistent in this area. However, preliminary findings from our small study, with interesting behavior-related protein markers, could be replicated in a larger set of saliva samples from smokers and non-smokers in the future.

CONCLUSIONS

Our iTRAQ analysis identified several new proteins in saliva of smokers. Some of these novel proteins may respond to physiological or psychological stressors in smokers following smoking. However, further studies are needed to validate these findings and future experiments will require their validation in a larger sample size. Moreover, an understanding of combined expression for some of these proteins in addition to sAA and cortisol levels could potentially lead to new and improved methods for behavioral and pharmacological interventions. Candidate proteins that would be interesting to validate include: ACBP, A2ML1, APOA4, BPIB1, BPIA2, CAH1, CAH6, DSG1, EST1, GRP78, GSTO1, sAA, SAP, STAT, TCO1, and TGM3, in addition to cortisol.

REFERENCES

- McCarthy M. Smoking remains leading cause of premature death in US. BMJ. 2014;348:g396. doi:10.1136/bmj.g396
- Howes S, Hartmann-Boyce J, Livingstone-Banks J, Hong B, Lindson N. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2020;4(4):CD000031. doi:10.1002/14651858.CD000031.pub5
- Parrott AC. Does cigarette smoking cause stress? Am Psychol. 1999;54(10):817-820. doi:10.1037//0003-066x.54.10.817
- Trueba AF, Mizrachi D, Auchus RJ, Vogel PD, Ritz T. Effects of psychosocial stress on the pattern of salivary protein release. Physiol Behav. 2012;105(3):841-849. doi:10.1016/j.physbeh.2011.10.014
- Marvin RK, Saepoo MB, Ye S, et al. Salivary protein changes in response to acute stress in medical residents performing advanced clinical simulations: a pilot proteomics study. Biomarkers. 2017;22(3-4):372-382. doi:10.1080/1354750X.2017.1279215
- Gilbert DG, Meliska CJ, Williams CL, Jensen RA. Subjective correlates of cigarette-smoking-induced elevations of peripheral beta-endorphin and cortisol. Psychopharmacology (Berl). 1992;106(2):275-281. doi:10.1007/BF02801984
- Kirschbaum C, Wüst S, Strasburger CJ. 'Normal' cigarette smoking increases free cortisol in habitual smokers. Life Sci. 1992;50(6):435-442. doi:10.1016/0024-3205(92)90378-3
- Ghura S, Gross R, Jordan-Sciutto K, et al. Bidirectional Associations among Nicotine and Tobacco Smoke, NeuroHIV, and Antiretroviral Therapy. J Neuroimmune Pharmacol. 2020;15(4):694-714. doi:10.1007/s11481-019-09897-4
- Li MD, Wang J. Neuroproteomics and its applications in research on nicotine and other drugs of abuse. Proteomics Clin Appl. 2007;1(11):1406-1427. doi:10.1002/prca.200700321
- Billing AM, Revets D, Hoffmann C, Turner JD, Vernocchi S, Muller CP. Proteomic profiling of rapid non-genomic and concomitant genomic effects of acute restraint stress on rat thymocytes. J Proteomics. 2012;75(7):2064-2079. doi:10.1016/j.jprot.2012.01.008
- 11. Hwang YY, Li MD. Proteins differentially expressed in response to nicotine in five rat brain regions: identification

using a 2-DE/MS-based proteomics approach. Proteomics. 2006;6(10):3138-3153. doi:10.1002/pmic.200500745

- Cecconi D, Tessari M, Willé DR, et al. Serum proteomic analysis during nicotine self-administration, extinction and relapse in rats. Electrophoresis. 2008;29(7):1525-1533. doi:10.1002/elps.200700388
- Guingab-Cagmat J, Bauzo RM, Bruijnzeel AW, Wang KK, Gold MS, Kobeissy FH. Methods in tobacco abuse: proteomic changes following second-hand smoke exposure. Methods Mol Biol. 2012;829:329-48. doi: 10.1007/978-1-61779-458-2_22
- Steptoe A, Ussher M. Smoking, cortisol and nicotine. Int J Psychophysiol. 2006;59(3):228-235. doi:10.1016/j.ijpsycho.2005.10.011
- Choi D, Ota S, Watanuki S. Does cigarette smoking relieve stress? Evidence from the event-related potential (ERP). Int J Psychophysiol. 2015;98(3 Pt 1):470-476. doi:10.1016/j.ijpsycho.2015.10.005
- Hajek P, Taylor T, McRobbie H. The effect of stopping smoking on perceived stress levels. Addiction. 2010;105(8):1466-1471. doi:10.1111/j.1360-0443.2010.02979.x
- Rohleder N, Nater UM, Wolf JM, Ehlert U, Kirschbaum C. Psychosocial stress-induced activation of salivary alpha-amylase: an indicator of sympathetic activity? Ann N Y Acad Sci. 2004;1032:258-263. doi:10.1196/annals.1314.033
- Bosch JA, Veerman EC, de Geus EJ, Proctor GB. a-Amylase as a reliable and convenient measure of sympathetic activity: don't start salivating just yet! Psychoneuroendocrinology. 2011;36(4):449-453. doi:10.1016/j.psyneuen.2010.12.019
- Bortner JD Jr, Richie JP Jr, Das A, et al. Proteomic profiling of human plasma by iTRAQ reveals downregulation of ITI-HC3 and VDBP by cigarette smoking. J Proteome Res. 2011;10(3):1151-1159. doi:10.1021/pr100925p
- 20. Baraniuk JN, Casado B, Pannell LK, et al. Protein networks in induced sputum from smokers and COPD patients. Int J Chron Obstruct Pulmon Dis. 2015;10:1957-1975. doi:10.2147/COPD.S75978
- 21. Regan EA, Mazur W, Meoni E, et al. Smoking and COPD increase sputum levels of extracellular superoxide dismutase. Free Radic Biol Med. 2011;51(3):726-732. doi:10.1016/j.freeradbiomed.2011.05.008
- 22. Aksoy MO, Kim V, Cornwell WD, et al. Secretion of the endoplasmic reticulum stress protein, GRP78, into the BALF is increased in cigarette smokers. Respir Res. 2017;18(1):78. doi:10.1186/s12931-017-0561-6
- 23. Landi C, Bargagli E, Magi B, et al. Proteome analysis of bronchoalveolar lavage in pulmonary langerhans cell histiocytosis. J Clin Bioinforma. 2011;1:31. doi:10.1186/2043-9113-1-31
- 24. Jessie K, Pang WW, Haji Z, Rahim A, Hashim OH. Proteomic analysis of whole human saliva detects enhanced expression of interleukin-1 receptor antagonist,

thioredoxin and lipocalin-1 in cigarette smokers compared to non-smokers. Int J Mol Sci. 2010;11(11):4488-4505. doi:10.3390/ijms11114488

- 25. Taniguchi M, Iizuka J, Murata Y, et al. Multimolecular salivary mucin complex is altered in saliva of cigarette smokers: detection of disulfide bridges by Raman spectroscopy. Biomed Res Int. 2013;2013:168765. doi:10.1155/2013/168765
- 26. Ma L, Muscat J, Sinha R, Sun D, Xiu G. Proteomics of exhaled breath condensate in lung cancer and controls using data-independent acquisition (DIA): a pilot study. J Breath Res. 2020. doi:10.1088/1752-7163/abd07e
- 27. van der Vaart H, Postma DS, Timens W, ten Hacken NH. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax. 2004;59(8):713-721. doi:10.1136/thx.2003.012468
- 28. Franciosi L, Postma DS, van den Berge M, et al. Susceptibility to COPD: differential proteomic profiling after acute smoking. PLoS One. 2014;9(7):e102037. doi:10.1371/journal.pone.0102037
- 29. Krebs NM, Chen A, Zhu J, et al. Comparison of Puff Volume With Cigarettes per Day in Predicting Nicotine Uptake Among Daily Smokers. Am J Epidemiol. 2016;184(1):48-57. doi:10.1093/aje/kwv341
- 30. Sinha I, Karagoz K, Fogle RL, et al. 'Omics' of Selenium Biology: A Prospective Study of Plasma Proteome Network Before and After Selenized-Yeast Supplementation in Healthy Men. OMICS. 2016;20(4):202-213. doi:10.1089/omi.2015.0187
- 31. The R Foundation. The R Project for Statistical Computing. Accessed March 8, 2021. https://www.Rproject.org
- 32. Levine A, Zagoory-Sharon O, Feldman R, Lewis JG, Weller A. Measuring cortisol in human psychobiological studies. Physiol Behav. 2007;90(1):43-53. doi:10.1016/j. physbeh.2006.08.025
- 33. Hellhammer DH, Wüst S, Kudielka BM. Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology. 2009;34(2):163-171. doi:10.1016/j.psyneuen.2008.10.026
- 34. Sigurdsson G Jr, Gudnason V, Sigurdsson G, Humphries SE. Interaction between a polymorphism of the apo A-I promoter region and smoking determines plasma levels of HDL and apo A-I. Arterioscler Thromb. 1992;12(9):1017-1022. doi:10.1161/01.atv.12.9.1017
- 35. Mero N, Van Tol A, Scheek LM, et al. Decreased postprandial high density lipoprotein cholesterol and apolipoproteins A-I and E in normolipidemic smoking men: relations with lipid transfer proteins and LCAT activities. J Lipid Res. 1998;39(7):1493-1502. Accessed March 8, 2021. https://www.jlr.org/action/ showPdf?pii=S0022-2275%2820%2932531-1
- 36. Laisalmi M, Kokki H, Soikkeli A, et al. Effects of cigarette smoking on serum fluoride concentrations and renal function integrity after 1 MAC-h sevoflurane

anaesthesia. Acta Anaesthesiol Scand. 2006;50(8):982-987. doi:10.1111/j.1399-6576.2006.01061.x

- 37. Taskin MI, Bilen C, Ergun A, Gencer N, Inceboz U. *In vitro* effects of estrogen and progesterone containing drugs on human erythrocyte carbonic anhydrase I and II isozymes in women smokers and nonsmokers. J Chin Med Assoc. 2015;78(9):513-519. doi:10.1016/j.jcma.2015.03.014
- 38. Gonçalves I, Hultman K, Dunér P, et al. High levels of cathepsin D and cystatin B are associated with increased risk of coronary events. Open Heart. 2016;3(1):e000353. doi:10.1136/openhrt-2015-000353
- 39. Chowdhury A, Choudhury A, Chakraborty S, et al. p-Benzoquinone-induced aggregation and perturbation of structure and chaperone function of a-crystallin is a causative factor of cigarette smokerelated cataractogenesis. Toxicology. 2018;394:11-18. doi:10.1016/j.tox.2017.11.018
- 40. Gao W, Zhang C, Feng Y, et al. Fascin-1, ezrin and paxillin contribute to the malignant progression and are predictors of clinical prognosis in laryngeal squamous cell carcinoma. PLoS One. 2012;7(11):e50710. doi:10.1371/journal.pone.0050710
- Gally F, Chu HW, Bowler RP. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection. PLoS One. 2013;8(1):e51784. doi:10.1371/journal.pone.0051784
- 42. Tung MC, Wang YH, Yeh SD, et al. Combined effects of GSTO1 and SULT1A1 polymorphisms and cigarette smoking on urothelial carcinoma risk in a Taiwanese population. J Formos Med Assoc. 2014;113(9):640-647. doi:10.1016/j.jfma.2012.08.015
- 43. Chen HC, Ip SW, Lin FD. Simultaneous Mass Spectrometric Analysis of Methylated and Ethylated Peptides in Human Hemoglobin: Correlation with Cigarette Smoking. Chem Res Toxicol. 2017;30(11):2074-2083. doi:10.1021/acs.chemrestox.7b00234
- 44. Lima CF, Leite SF, Carvalho YR, Cabral LA, Balducci I, Almeida JD. Cytokeratin profile in exfoliative cytology of smokers. Anal Quant Cytol Histol. 2011;33(1):19-24.
- 45. Demir AS, Erdenen F, Müderrisoğlu C, et al. Diagnostic and prognostic value of tumor M2-pyruvate kinase levels in patients with colorectal canhcer. Turk J Gastroenterol. 2013;24(1):36-42.
- 46. Wang Y, Jia M, Yan X, et al. Increased neutrophil gelatinase-associated lipocalin (NGAL) promotes airway remodelling in chronic obstructive pulmonary disease. Clin Sci (Lond). 2017;131(11):1147-1159. doi:10.1042/CS20170096
- Kim JH, Hong YC. Interactive effect of smoking and NQO1 haplotypes on lung cancer risk. J Korean Med Sci. 2015;30(3):221-226. doi:10.3346/jkms.2015.30.3.221
- Na HK, Kim M, Chang SS, et al. Tobacco smokingresponse genes in blood and buccal cells. Toxicol Lett. 2015;232(2):429-437. doi:10.1016/j.toxlet.2014.10.005
- 49. Piyathilake CJ, Macaluso M, Hine RJ, Vinter DW, Richards

EW, Krumdieck CL. Cigarette smoking, intracellular vitamin deficiency, and occurrence of micronuclei in epithelial cells of the buccal mucosa. Cancer Epidemiol Biomarkers Prev. 1995;4(7):751-758. Accessed March 8, 2021. https://cebp.aacrjournals.org/content/ cebp/4/7/751.full.pdf

- Jenabian N, Pouramir M, Motallebnejad M, Bamdadian J, Rahimi-Rad M. Evaluation of the Effect of Passive Smoking on Lactoferrin and AST on 12 - 15 Years Old Children and Adolescents. Iran J Pediatr. 2015;25(5):e2996. doi:10.5812/ijp.2996
- 51. Heo SM, Lee S, Wang H, Jeong JH, Oh SW. Levels of common salivary protein 1 in healthy subjects and periodontal patients. J Periodontal Implant Sci. 2016;46(5):320-328. doi:10.5051/jpis.2016.46.5.320
- Nater UM, Rohleder N. Salivary alpha-amylase as a noninvasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009;34(4):486-496. doi:10.1016/j.psyneuen.2009.01.014
- Perry GH, Dominy NJ, Claw KG, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39(10):1256-1260. doi:10.1038/ng2123
- 54. Mandel AL, Peyrot des Gachons C, Plank KL, Alarcon S, Breslin PA. Individual differences in AMY1 gene copy number, salivary α-amylase levels, and the perception of oral starch. PLoS One. 2010;5(10):e13352. doi:10.1371/journal.pone.0013352
- 55. Weiner D, Levy Y, Khankin EV, Reznick AZ. Inhibition of salivary amylase activity by cigarette smoke aldehydes. J Physiol Pharmacol. 2008;59 Suppl 6:727-737. Accessed March 8, 2021. http://www.jpp.krakow.pl/journal/ archive/12_08_s6/articles/72_article.html
- 56. Timberlake 2nd MA, Dwivedi Y. Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology. Front Pharmacol. 2016;6:319. doi:10.3389/fphar.2015.00319
- 57. Ota VK, Chen ES, Ejchel TF, et al. APOA4 polymorphism as a risk factor for unfavorable lipid serum profile and depression: a cross-sectional study. J Investig Med. 2011;59(6):966-970. doi:10.2310/JIM.0b013e31822467cd

CONFLICTS OF INTEREST

The authors have each completed and submitted an ICMJE form for disclosure of potential conflicts of interest. The authors declare that they have no competing interests, financial or otherwise, related to the current work. J. Muscat reports that he received support from NIH.

FUNDING

This work was supported by the National Institute on Drug Abuse, National Institutes of Health (Proposal number R01DA026815) and partially by National Heart, Lung, and Blood Institute (Proposal number R01HL152436).

ETHICAL APPROVAL AND INFORMED CONSENT

All the participants signed a consent form prior to their participation in the pilot study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Institutional Review Board (IRB# PRAMS042265EP) of Penn State University College of Medicine.

DATA AVAILABILITY

The data supporting this research can be found in the Supplementary file.

AUTHORS' CONTRIBUTIONS

Research Concept and Design: JEM, JPR Jr and RS. Collection and/ or assembly of data: IS, JM, NMK and AES. Data analysis and interpretation: IS, VAW, JEM and RS. Writing manuscript: IS, JEM and RS. All authors read and approved the final manuscript.

PROVENANCE AND PEER REVIEW

Not commissioned; externally peer reviewed.